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Abstract Aromatase (cytochrome 19) inhibitors have
emerged as promising candidates for treatment of breast
cancer. In search of potent aromatase inhibitors, docking
and three-dimensional quantitative structure - activity
relationship (3D-QSAR) studies using molecular shape,
spatial, electronic, structural and thermodynamic descrip-
tors have been performed on a diverse set of compounds
having human aromatase inhibitory activities. An attempt
has also been made to include two-dimensional (2D)
descriptors in the QSAR studies. The chemometric tools
used for model development are genetic function approx-
imation (GFA) and genetic partial least squares (G/PLS).
The docking study shows that the important interacting
amino acids in the active site cavity are Met374, Arg115,
Ile133, Ala306, Thr310, Asp309, Val370 and Ser478. One
or more hydrogen bond formation with Met374 is one of
the essential requirements for the ligands for optimum
aromatase inhibition. The binding is further stabilized by
van der Waals interactions with a few non-polar amino acid
residues in the active site. The developed QSAR models
indicate the importance of different shape, Jurs parameters,
structural parameters, topological branching index and E-
state index for different fragments. The results obtained
from the QSAR analysis are supported by our docking
observations. There should be one or two hydrogen bond
acceptor groups (like –NO2, -CN) and optimal hydropho-
bicity for ideal aromatase inhibitors. A GFA model with
spline option obtained using 3D descriptors was found to be

the best model based on internal validation (Q2=0.668)
while the best (externally) predictive model was a GFA
model with spline option using combined set (2D and 3D)
descriptors (Rpred

2=0.687). Based on rm
2
(overall) criterion,

the best model was a G/PLS model (using 3D descriptors)
with spline option (rm

2
(overall)=0.606).
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Introduction

Breast cancer is the second leading cause of cancer death in
women in the United States. About 180,000 women in the
United States were found to have invasive breast cancer in
2007. Approximately over 2 million women living in the
United States have been treated for breast cancer [1]. In
post menopausal women, the estrogens are synthesized
from adrenal C19 steroids in peripheral tissues like liver,
muscles [2]. The role of endogenous estrogens in the
development of breast cancer has long been recognized [3]
and estrogens are known to play pivotal role in the
proliferation of cancer cells [4]. In endocrine therapy two
main approaches have been devised to antagonize the
action of these hormones. The approaches are either to act
directly at the estrogen receptor by means of antagonists
like tamoxifen or by blocking the key target (like enzyme)
of the process [5]. Two-thirds of breast cancers are
hormone-dependent, contain estrogen receptors (ERs), and
require estrogen for tumor growth. These patients are,
therefore, suitable candidates for hormonal therapy, which
targets blocking estrogen stimulation of breast cancer cells
[6, 7]. Aromatase (P450 arom) is a mitochondrial enzyme
consisting of cytochrome P450 (CYP450) heme protein and
a NADPH cytochrome reductase. Cytochrome P450 is a
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family of more than 60 important metabolizing enzymes.
Aromatase (CYP 19) is one of the subfamilies of
cytochrome P450s. Aromatase converts androgens to estro-
gens and is a particularly attractive target in the treatment of
estrogen receptor positive breast cancer. Inhibitors of this
enzyme are potential therapeutics for estrogen dependant
breast cancers [8]. Aromatase inhibitors can be both
steroidal and non-steroidal compounds [9–11].

Historically, the first clinically used aromatase inhibitor
(aminoglutethimide) was marketed in the late 1970s [12].
Several reports showed advantages of nonsteroidal aroma-
tase inhibitors over tamoxifen in adjuvant treatment.
Therefore, aromatase inhibitors represent an interesting
alternative in the first line therapy. Third generation
aromatase inhibitor (AIs) which include two triazole
derivatives, anastrozole (Arimidex) [13], letrozole (Femara)
[14] and one steroidal analogue, exemestine (Aromasin)
[15] are currently used clinically for the treatment of
hormone dependant breast cancer in postmenopausal
women [16–19]. However, the occurrence of important
side effects associated with the prolonged clinical use of
AIs (like the onset of resistance in the long-term treatment
of the breast cancer, and a reduced efficacy in the treatment
of the more advanced forms of the tumor) calls for the
search of new, potent, more selective, and less toxic
cytochrome 19 (CYP19) inhibitors [20, 21].

The recently solved crystal structure of human placental
aromatase enzyme (pdb code 3EQM) [22] helps to
understand the molecular basis for structure function
characterization of human aromatase enzyme. Due to non
availability of three dimensional (3D) crystal structure of
aromatase until then, several docking studies were carried
out [23–27] taking a theoretical 3-D model of aromatase
(for example: pdb code 1TQA).

One of the most important features for strong inhibitor
binding to the CYP enzymes is the capability to interact as
the ligand with the iron atom of the heme group. Most of
the non steroidal aromatase inhibitors of therapeutic
importance act by binding to the enzyme via a competitive
mechanism that involves coordination with heme iron [28].
Exploration of the binding characteristics of aromatase
inhibitors in the active site as well as the properties
important for binding, are of importance in designing more
selective aromatase inhibitors. To our knowledge, the
binding mode of ligands to the aromatase enzyme using
3EQM has not been reported earlier. In this context we
have performed molecular docking followed by QSAR
studies with molecular shape analysis descriptors along
with thermodynamic and structural descriptors and also
with selected topological parameters on structurally diverse
datasets of aromatase inhibitors to explore the important
properties of potent and selective aromatase inhibitors
[29–40].

Methods and materials

Dataset

Inhibitory activities of different classes of compounds
toward human aromatase enzyme reported in the literature
[29–40] have been used as the model data set for the
present study (Tables 1 and 2). The experimental protocols
for the determinations of enzyme inhibitory activities for all
the compounds were the same. The quality of the data is
good enough for QSAR studies as evidenced from small
standard error values of individual observations. The
inhibitory potencies of the compounds [IC50(μM)] have
been converted to the logarithmic scale [pIC50(mM)] and
then used for subsequent QSAR analyses as the response
variable.

Docking

Crystal structure of human placental aromatase cytochrome
P450 in complex with androstenedione (EC: 1.14.14.1,
3EQM.pdb) [22] has been obtained from the RCSB protein
data bank (http://www.pdb.org). The enzyme is co-
crystallized with androstenedione, protoporphirin IX con-
taining Fe and phosphate ion. We have performed the
docking studies by using LigandFit of receptor-ligand
interactions protocol section of Discovery Studio 2.1 [41].
Initially there was a pretreatment process for both the
ligands and the enzyme (aromatase). For ligand preparation,
all the duplicate structures were removed and the options
for ionization change, tautomer generation, isomer genera-
tion, Lipinski filter and 3D generator have been set true.
For enzyme preparation, the whole enzyme has been
selected and hydrogen atoms were added to it. The pH of
the protein has been set in the range of 6.5 to 8.5. Then we
have defined the aromatase enzyme as a total receptor and
the active site was selected based on the ligand binding
domain of bound ligand androstenedione. Then the pre-
existing ligand (androstenedione) was removed and a
freshly prepared ligand (compound from the dataset in
Table 1) prepared by us was placed. Then from the
receptor- ligand interaction section LigandFit was chosen.
We have used the preprocessed receptor and ligand as inputs.
PLP1 was selected as the energy grid. The conformational
search of the ligand poses was performed by Monte Carlo
trial method. Torsional step size for polar hydrogen was set
at 10. The docking was performed with consideration of
electrostatic energy. Maximum internal energy was set at
10,000 Cal. Pose saving and interaction filters were set as
default. Fifty poses were docked for each compound. During
the procedure of docking, no attempt was made to minimize
the ligand-enzyme complex (rigid docking). After comple-
tion of docking, the docked enzyme (protein-ligand com-
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Table 1 Structural features of the diverse compounds [29–40] having aromatase inhibitory activitya

N
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X
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z  
Sl Isomerism R T X Y W Z 
1 - H Et H C N C 
2 - H Ph H C N C 
3* - H 4-F-Ph H C N C 
4* - H Ph H N C N 
5 - H 4-F-Ph H N C N 
6* R Br Et Ph C N C 
7 R Br Et 4-Cl-Ph C N C 
8* R Br Et Ph N C N 
9* R Br Et 4-Cl-Ph N C N 

NR
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Y
X
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N

 
Sl Isomerism R T X Y W 
10* R 4-F-Ph H C N C 
11 R 3-Cl-Ph H C N C 
12 R 4-F-Ph Br C N C 
13 R 4-F-Ph Cl C N C 
14* R 4-F-Ph H N C N 
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W

Y
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N

 
15 R 4-F-Ph H C N C 
16 R 3-Cl-Ph H C N C 
17 R 4-Cl-Ph H C N C 
18 R 4-Br-Ph H C N C 
19 R 4-F-Ph Br C N C 

T

X
N N
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Sl Isomerism R T X 
20 R H Et 4-F-Ph 
21 R Br Me 4-F-Ph 
22 - H 2-Cl-benzyl H 
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- H CN
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R H SO2 CH3

 
Ph 
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Sl Isomerism R 
25 R H 
26 R F 

N
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X
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Y

z  
Sl Isomerism R T X Y W Z 
27* R H Me 4-F-benzyl C N C 
28 R H Me 4-F-benzyl N C N 
29 R Br H 4-F-benzyl C N C 
30* R F H 4-F-benzyl C N C 
31 R CN H 4-F-benzyl C N C 
32 R Cl H 4-F-benzyl C N C 

N

T
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Y
W

z

 
Sl Isomerism R T X Y W Z 
33* R H Me 4-F-Ph C N C 
34 R Br H 4-F-Ph C N C 
35 R Br Me 4-Cl-Ph C N C 
36 R Br Me Ph C N C 
37 R Br Me 3-Cl-Ph C N C 
38* R Br Me 4-Cl-Ph N C N 
39 R Br Me Ph N C N 
40 R Br H 4-F-Ph N C N 

N

X
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T
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Sl Isomerism R T X 
41 R Br n-Pr 4-F-Ph 
42 R Br i-Pr 4-F-Ph 

N
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Sl R T X 
43 H H CN 
44 H Br H 
45 H NO2 H 
46* H CN H 

N
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W
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Sl R T X Y W 
47 C N C C H 
48 N C N C H 
49 N N C C H 
50 N N C N H 
51 N C N C Me 
52 N C N C Et 
53* N C N C F 
54* N N N C F 
55 N N C N F 
56 C N C C F 
57*

N

N

CN

 
58 

N
N

CNNC

 
59 

CN

N

N  
60 

NC CN

NN

 
61 

NC CN

N
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N

N

N
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N

N
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N

N  
65 

N

N
CN

 
66* 

N

N

N
H

N
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N
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68* 
O

CN

N

N  

O

O

T

R

Y

WX

 
Sl R T X Y W 
69* CN -CH2-Imidazol-1-yl H H H 
70 NO2 -CH2-Imidazol-1-yl H H H 
71 Br -CH2-Imidazol-1-yl H H H 
72 H H OMe -CH2-Imidazol-1-yl Ph 

O

O N

N

R  
Sl Isomerism R 
73 R NO2 

74 S NO2 

75 R Br 
76* S Br 
77 R CN 
78 S CN 

N

N

N

T

R

 
Sl Isomerism R T 
79 R 4-F H 
80 R 4-Cl H 
81 S 4-Cl H 
82 R 3-Cl H 
83* R 4-Cl Me 
84 R 4-CN H 

N

N

N

R

T

 
Sl R T 
85* H H 
86 Me H 
87* Cl H 
88 F H 
89 H Me 
90 H Cl 
91* H F 
92* OMe H 
93 H OMe 
94 Cl Cl 
95 F F 
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N
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Sl Isomerism R T 
96* R H t-Bu 
97 R H H 
98 R Me H 
99 R Cl H 
100 R F H 
101 R H Me 
102 R H F 
103 R OMe H 
104 R H OMe 
105 R Cl Cl 
106 R F F 

R N

N

W X

T

Y

 
Sl R T X Y W 
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C N 

 

C 
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C N 
 

N 

109* 

 
C N 

Cl

Cl  
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C N 
 

C 
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C N 
Cl

Cl  
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S  
C 

113* Cl

Cl  
N C 

 
N 

114 

 

N C 
 

N 

115* 

N

NC CN

N

 
116 

N

N

CN

(S) 
aPh=Phenyl, Me= Methyl, Et=Ethyl, R = Rectus, S = Sinister 
* indicates test set compounds 
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Table 2 Observed and calculated aromatase inhibitory activity of
different classes of compounds

Sl Obsa Calb Calc Cald Cale

Training set

1 2.446 3.074 3.640 3.981 2.836

2 4.003 3.478 3.840 3.679 4.294

5 3.699 4.027 3.985 3.619 3.846

7 3.928 3.433 3.206 3.601 3.338

11 3.959 3.638 3.829 3.952 3.938

12 4.046 3.648 3.446 3.657 3.887

13 4.222 3.890 3.755 3.812 3.902

15 4.222 4.573 4.554 4.082 4.406

16 3.77 4.093 4.037 4.082 4.254

17 4.222 4.144 4.043 4.082 4.136

18 4.155 3.915 3.742 3.955 3.569

19 3.699 4.134 3.668 3.815 4.140

20 4.222 4.130 4.380 4.293 4.110

21 4.097 3.878 3.733 4.091 3.887

22 4.301 3.489 3.849 3.929 3.881

23 4.301 4.064 4.807 4.503 4.164

24 4.301 4.457 4.698 3.821 3.090

25 3.678 3.474 3.910 4.173 3.502

26 4.398 4.149 4.551 4.112 4.186

28 4.523 3.596 3.769 3.913 3.832

29 4.301 3.400 3.586 3.673 3.503

31 3.854 4.212 4.594 4.568 4.120

32 3.824 3.631 3.903 3.828 3.564

34 3.62 3.849 3.533 3.660 3.893

35 3.387 2.991 2.832 3.059 3.053

36 3.377 3.454 3.354 3.413 3.027

37 3.027 2.963 2.757 3.059 3.144

39 2.485 3.152 2.649 3.291 3.554

40 2.461 3.531 3.205 3.537 3.762

41 3.495 3.466 3.479 3.519 3.427

42 3.469 3.458 3.472 3.521 3.449

43 3.523 4.394 4.256 4.919 4.687

44 4.071 4.264 3.821 4.432 4.627

45 5.222 4.837 4.882 4.312 4.271

47 5.398 5.839 4.788 4.931 5.505

48 4.949 5.421 5.114 4.929 5.272

49 4.921 4.687 4.920 4.929 4.736

50 6 4.986 5.424 4.928 4.991

51 5.046 4.942 4.559 4.757 4.739

52 4.745 4.681 3.918 4.674 4.619

55 4.523 4.589 5.175 4.743 4.838

56 5.222 5.036 4.756 4.746 4.895

58 3.638 4.840 4.714 4.472 4.645

59 5.699 4.755 4.517 4.543 4.797

60 4.155 4.687 4.893 4.905 4.759

61 4.921 5.129 4.972 4.906 4.695

63 4.678 4.409 4.599 3.950 4.224

Table 2 (continued)

Sl Obsa Calb Calc Cald Cale

64 5.097 4.723 4.434 4.700 4.974

65 4.678 4.727 4.416 4.437 5.041

67 5.097 3.976 4.454 4.357 4.013

70 2.959 3.357 3.523 3.482 3.700

71 2.678 3.518 3.240 3.445 3.864

72 3.26 2.371 3.587 3.439 3.445

73 4.745 4.065 4.180 3.992 3.893

74 3.155 3.827 4.008 3.992 3.706

75 4.602 4.385 4.215 4.112 4.162

77 4.431 4.186 4.342 4.637 4.257

78 3.27 3.768 4.171 4.637 4.139

79 4.58 5.012 4.683 4.263 4.691

80 4.347 4.767 4.392 4.263 4.695

81 5.046 4.180 4.421 4.263 4.145

82 4.527 4.704 4.423 4.263 4.600

84 4.714 4.636 4.880 4.788 4.710

86 2.529 3.125 3.132 2.890 3.191

88 3.334 3.363 3.219 3.076 3.347

89 2.658 2.943 3.165 2.921 2.931

90 2.926 2.929 2.852 2.892 2.783

93 2.815 2.969 3.261 3.269 2.940

94 2.438 2.802 2.262 2.507 2.662

95 3.453 3.449 3.026 2.937 3.462

97 3.023 3.144 3.217 3.489 3.452

98 2.983 3.014 2.993 3.133 3.172

99 2.963 3.318 3.181 3.105 3.106

100 2.863 3.528 3.589 3.319 3.378

101 2.879 2.959 2.920 3.164 3.195

102 3.947 3.726 3.781 3.350 3.464

103 3.291 2.864 3.349 3.482 2.868

104 2.774 3.191 3.688 3.512 2.945

105 2.907 3.171 2.926 2.751 2.754

106 3.59 3.714 3.501 3.180 3.489

107 2.338 2.815 2.772 2.529 2.475

108 1.885 2.558 2.783 1.998 2.197

110 2.666 2.409 2.503 2.082 2.294

111 2.818 2.622 1.912 2.721 2.802

112 3.237 2.862 3.172 3.800 3.326

114 2.296 2.323 2.277 1.767 2.365

116 5.495 4.613 4.516 5.196 4.865

Test set

3 4.144 4.271 4.466 3.619 4.111

4 3.509 3.682 4.019 3.679 4.054

6 4 3.606 3.796 3.955 3.573

8 2.52 3.364 3.295 3.903 3.524

9 3.162 3.191 3.295 3.549 3.125

10 4.222 4.100 4.334 4.082 4.142

14 3.301 3.877 3.785 4.082 3.905

27 4.523 3.704 4.348 3.962 3.862
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plex) was analyzed to investigate the type of interactions.
Ten docking poses saved for each compound were ranked
according to their dock score function. The pose (conforma-
tion) having the highest dock score was selected and was
analyzed to investigate the type of interactions.

Validation of the docking process

Validation is the essential part of docking studies. For
validation purpose we have removed the preexisting co-
crystallized ligand and 3D model of the ligand was freshly
prepared (newly developed in silico model of the com-
pound) and energy minimized. After that we have docked
the energy minimized ligand and compared the binding site
of preexisting co-crystallized ligand and that of the freshly
prepared ligand. These steps are performed to determine
whether the docked ligand binds with the same amino acid
residues, as it got bound in the crystal structure of the
enzyme, or it binds differently to the enzyme.

Descriptors

The analyses were performed using spatial (Radius of
gyration, Jurs descriptors, Shadow indices, Area, PMI-mag,

Density, Vm), shape (DiFFV, Fo, NCOSV, COSV, Shape
RMS), thermodynamic (AlogP, AlogP98, Molref) and struc-
tural (MW, hydrogen bond donor, hydrogen bond acceptor,
chiral centers, number of rotatable bonds) and topological
descriptors including E-state descriptors. For the calculation
of 3D descriptors, multiple conformations of each molecule
were generated using the optimal search as a conformational
search method. Each conformer was subjected to an energy
minimization procedure using smart minimizer under open
force field (OFF) to generate the lowest energy conformation
for each structure. The charges were calculated according to
the Gasteiger method. All the descriptors were calculated
using Descriptor+ module of the Cerius2 version 4.10
software running on a Silicon Graphics workstation [42].
Definitions of all descriptors can be found at the Cerius2
tutorial available at the website htt://www.accelrys.com.

Model development

It was our priority to construct QSAR models which were
statistically robust both internally as well as externally. The
main target of any QSAR modeling is that the developed
model should be robust enough to be capable of making
accurate and reliable predictions of biological activities of
new compounds. So, QSAR models which are developed
from the training set should be validated using new
chemical entities for checking the predictive capacity of
the developed models. That is why the original data set is
divided into training and test sets for QSAR model
development and validation respectively. The ability of a
model to predict accurately the target property of com-
pounds that were not used for model development is based
on the fact that a molecule which is structurally very similar
to the training set molecules will be predicted well because
the model has captured features that are common to the
training set molecules and is able to find them in the new
molecule [43]. On the other hand, a new molecule which
has very little in common with the training set data should
not be predicted very well, i.e., the confidence in its
prediction should be low. The selection of training and test
sets should be based on the proximity of the representative
points of the test set to representative points of the training
set in the multidimensional descriptor space. In our study,
the whole data set (n=116) was divided into training (n=
87) and test (n=29) sets by k-means clustering techniques
based on the standardized 2D variables [43]. This approach
(clustering) ensures that the similarity principle can be
employed for the activity prediction of the test set [44]. The
splitting has been performed such that points representing
both training and training sets are distributed within the
whole descriptor space occupied by the entire dataset, and
each point of the test set is close to at least one point of the
training set. QSAR models were developed using the

Table 2 (continued)

Sl Obsa Calb Calc Cald Cale

30 4.222 4.048 4.376 4.022 3.762

33 3.921 3.849 4.142 3.783 3.971

38 2.726 3.143 3.278 2.937 3.228

46 5 4.888 4.436 4.932 5.031

53 4.886 4.538 4.432 4.622 4.638

54 4.678 4.092 5.682 4.744 4.420

57 5.523 4.365 4.425 4.316 4.838

62 5 4.121 3.833 4.470 4.695

66 4.357 4.278 4.195 4.263 4.122

68 4.456 4.392 4.232 4.395 4.597

69 3.62 3.942 3.818 4.038 4.452

76 3.44 3.944 3.718 4.112 3.998

83 4.625 3.925 4.200 4.173 3.993

85 2.919 3.118 3.459 3.246 3.155

87 3.521 3.005 2.691 2.862 3.069

91 3.712 3.269 3.350 3.106 3.249

92 2.82 2.696 2.963 3.239 2.930

96 3.001 2.386 2.265 2.325 2.536

109 2.398 3.077 2.781 2.955 3.136

113 1.766 2.454 2.424 2.229 2.522

115 4.469 5.406 4.787 4.931 5.133

Obsa = a Observed aromatase inhibitory activity [29–40]; calb =
b Calculated from Eq. 1; Calc = c Calculated from Eq. 2; Cald =
Calculated from Eq. 3; Cale = Calculated from Eq. 4
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training set compounds (optimized by Q2), and then the
developed models were validated (externally) using the test set
compounds. For the development of the QSAR/QAARmodels
the statistical techniques used were genetic function approxi-
mation (GFA) and genetic partial least squares (G/PLS)

For the computation of shape analysis descriptors, the
major steps are (1) generation of conformers and energy
minimization; (2) hypothesizing an active conformer
(global minimum of the most active compound, though
we must acknowledge that minimum energy conformation
of an isolated molecule may not be same as that of the
molecule bound to the target site); (3) selecting a candidate
shape reference compound (based on active conformation);
(4) performing pairwise molecular superimposition using
the maximum common subgroup [MCSG] method; (5)
measuring molecular shape commonality using MSA
descriptors; (6) determination of other molecular features by
calculating spatial, electronic, and conformational parame-
ters; (7) selection of conformers; and (8) generation of QSAR
equations by genetic function algorithm (GFA). Optimal
search was used as a conformational search method. The
global minimum energy conformer of the most active
compound [50 having the highest pIC50(mM) value] was
selected as a shape reference to which all the structures in
the study compounds were aligned through pairwise super-
positioning. The method used for performing the alignment
was a maximum common subgroup (MCSG) [42, 45]. This
method looks at molecules as points and lines and uses the
techniques of graph theory to identify patterns. It finds the
largest subset of atoms in the shape reference compound
that is shared by all the structures in the study table and uses
this subset for alignment. A rigid fit of atom pairings was
performed to superimpose each structure so that it overlays
the shape reference compound. Finally additional electronic,
spatial and thermodynamic descriptors were also calculated.

Genetic function approximation (GFA) technique [46, 47]
was used to generate a population of equations rather than
one single equation for correlation between biological activity
and physicochemical properties. GFA involves the combina-
tion of multivariate adaptive regression splines (MARS)
algorithm with genetic algorithm to evolve population of
equations that best fit the training set data. It provides an error
measure, called the lack of fit (LOF) score that automatically
penalizes models with too many features. It also inspires the
use of splines as a powerful tool for non-linear modeling. A
distinctive feature of GFA is that it produces a population of
models (e.g., 100), instead of generating a single model, as
do most other statistical methods. The range of variations in
this population gives added information on the quality of fit
and importance of the descriptors.

The genetic partial least squares (G/PLS) algorithm [48,
49] may be used as an alternative to a GFA calculation. G/
PLS is derived from two QSAR calculation methods: GFA

and partial least squares (PLS). The G/PLS algorithm uses
GFA to select appropriate basis functions to be used in a
model and PLS regression as the fitting technique to weigh
the basis functions relative contributions in the final model.
Application of G/PLS thus allows the construction of larger
QSAR equations while still avoiding overfitting and
eliminating most variables.

Statistical qualities and model validation

The statistical qualities of the equations were judged by the
parameters such as squared correlation coefficient (R2) and
variance ratio (F) at specified degrees of freedom (df) [50].
For G/PLS equations, least-squares error (LSE) was taken
as an objective function to select an equation, while lack-
of-fit (LOF) was noted for the GFA derived equations. The
generated QSAR equations were validated by leave-one-out
cross-validation R2 (Q2) and predicted residual sum of
squares (PRESS) [51–53] and then were used for the
prediction of enzyme inhibition activity values of the test
set compounds. The prediction qualities of the models were
judged by statistical parameters like predictive R2 (Rpred

2),
squared correlation coefficient between observed and
predicted values of the test set compounds with (r2) and
without (r0

2) intercept. It was previously shown that use of
Rpred

2 and r2 might not be sufficient to indicate the external
validation characteristics [54]. Thus, an additional param-
eter rm

2
(test) [defined as r2»ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � r20
p Þ], which penal-

izes a model for large differences between observed and
predicted values of the test set compounds, was also
calculated. Two other variants [55, 56] of rm

2 parameter,
rm

2
(LOO) [57] and rm

2
(overall), were also calculated. The

parameter rm
2
(overall) is based on prediction of both training

(LOO prediction) and test set compounds. It was previously
shown [56] that rm

2
(LOO) and rm

2
(test) penalize a model more

strictly than Q2 and Rpred
2 respectively. Another parameter

Rp
2 (R2

p ¼ R2»
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � R2

r

p
) (R2

r being squared mean correla-
tion coefficient of random models) was also calculated [56]
to check whether the models thus developed are not
obtained by chance.

Results and discussion

Membership of compounds in different clusters generated
using k-means clustering is shown in Table 3. The test set
size was set to approximately 25% to the total data set size
[58] and the test set members are shown in Table 3.

Docking

In the present study, to understand the interactions between
human placental aromatase enzyme and its inhibitors, and
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to explore their binding mode, a docking study was
performed using the LigandFit tool available in Discovery
Studio 2.1 [41]. The specific cleft in which the ligands bind
(within 4 Å) contains both polar (Arg115, Arg375, Asp309,
Asp371, Ser478, Thr310, Asp371, Glu302) and non polar
(Ala306, Ala307, Ile133, Ile305, Leu477, Met374, Phe134,
Phe221, Trp224, Val369, Val370, Val373) amino acids and
this is in agreement with previous reports [27, 59]. The
crystal structure of human placental aromatase [22] shows
that the bound ligand androgen makes a hydrogen bond
with the backbone amide of Met374. Our docking study
with LigandFit using the freshly prepared model of the
ligand (androstenedione) also corroborates similar observa-
tion indicating the reliability of the docking procedure
(Figs. 1 and 2). Figure 1 shows X-ray crystal structure of
the protein along with the ligand (experimentally
obtained) while Fig. 2 shows docked conformation of the
ligand within the enzyme cavity. In both cases, the ligand
forms hydrogen bond with Met374 and interacts with
amino acids like Asp309, Ala306, Arg115, Leu477 and
Leu 372.

The results obtained in the docking study indicates the
important amino acids in the active site cavity responsible
for important interactions are Met374, Arg115, Ile133,
Ala306, Thr310, Asp309, Val370, Ser478. All the com-
pounds in the high activity range from one or two hydrogen
bond(s) with amide backbone of Met374 at a distance
ranging from 1.58–2.30 Å. In case of compound 45, the
nitro (-NO2) group forms two hydrogen bonds at 2.293 Å
and 2.034 Å (Fig. 3). The same nitro group also forms
another hydrogen bond with Arg115 (2.397 Å) (Fig. 3) and
this compound (45) shows good inhibitory activity. Com-
pound 59 forms two hydrogen bonds (Fig. 4), one between
the –CN group of the ligand and the amide back bone of
Met374 and the other between the NH fragment of the
azole nucleus and the side chain hydroxyl group of Thr310.
In spite of the steric bump formation with Ile133, this
compound possesses good inhibitory activity due to the
hydrogen bonds. In case of compound 116, apart from the
hydrogen bond with Met374 (using the –CN group), there
is a steric bump formation with the polar amino acid
Asp309 (Fig. 5). The docking results also suggest that apart
from hydrogen formation with Met374 and/or Arg115,
binding of different compounds with the active pocket is
stabilized by van der Waals interactions with the non polar
amino acids (Ala306, Thr310, Trp224, Val370, Ile133,
Phe134, Leu372, Val373). It can also be mentioned that the
ligands should contain hydrogen bond acceptor groups (like
–NO2, -CN) for hydrogen bond formation with Met374,
Arg115 and/or Thr310 in the active site for good aromatase
inhibition. The azoles family is going to hold an increas-
ingly prominent position in development of aromatase
inhibitors [13, 14]. The reason is that the azoles moiety isT
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responsible for coordination with heme which is evident
from the Figs. 3 and 4 [26, 28]. Considering the least active
compounds (like compounds 107, 108, 109, 113, 114) in
the data set, the docking results show that a number of
steric bumps with different amino acid residues occur in
these cases. In the case of compound 113, although one
hydrogen bond formed with Met374, two steric bumps
appear with the same amino acid residue (Fig. 6). Addi-
tional bumps have also occurred with amino acids Phe221,
Ser478, Ala306, Thr310 and most importantly with the
heme, thus resulting in poor inhibitory activity. Another

compound in the list, compound 107, shows poor inhibitory
activity. The reason may be due to a number of bumps
occurring with Asp309, Thr310, Met374, Arg115, Ser478,
Val370 (Fig. 7). The volume of the active cavity of the
enzyme is not more than 400 Å3 [22]. The molecules in the
least active range have molecular volume more than 300 Å3

(322 Å3 for 113 and 365 Å3 for compound 107) leading to

Fig. 4 Docked conformation of compound 59 along with the
important amino acid residues of human placental aromatase:
Compound 59 forms two hydrogen bonds one between the –CN
group of the ligand and the amide back bone of Met374 and the other
between the NH fragment of the azole nucleus and the side chain
hydroxyl group of Thr310

Fig. 3 Docked conformation of compound 45 along with the
important amino acid residues of human placental aromatase: the
nitro (-NO2) group of 45 forms two hydrogen bonds at 2.293 Å and
2.034 Å; the same nitro group also forms another hydrogen bond with
Arg115 (2.397 Å)

Fig. 2 Bound ligand (androstanedione) docked into the active site
human placental aromatase [important interacting amino acids and
iron in heme have been labeled]

Fig. 1 Bound ligand (androstanedione) in the active site of human
placental aromatase (X-ray crystal structure) [important interacting
amino acids and iron in heme have been labeled]
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formation of bumps. The ligands are somehow placed in
the active cavity but the orientation of the molecules
produces unfavorable steric interactions. One of the most
important features of a strong inhibitor binding to CYP
enzymes is the capability to interact as the ligand with
the iron atom of the heme group [28]. From Figs. 3 and 4,
it can be observed that the azole ring is in close proximity
to the heme moiety. It is reported in the literature that
azoles have the capacity to bind with heme iron of

cytochromes [60]. This is supported by the results of our
docking study.

Molecular shape analysis

The view of the aligned training set molecules is shown in
Fig. 8. The following two equations (Eqs. 1 and 2) were
among the best ones obtained from the genetic function
approximation (5000 iterations) and genetic partial least
squares (1000 crossovers, scaled variables, and other

Fig. 8 Aligned geometry of training set molecules

Fig. 7 Docked conformation of compound 107 along with the
important amino acid residues of human placental aromatase: A
number of bumps occur with Asp309, Thr310, Met374, Arg115,
Ser478, Val370

Fig. 6 Docked conformation of compound 113 along with the
important amino acid residues of human placental aromatase: although
one hydrogen bond has formed with Met374, two steric bumps appear
with the same amino acid residue

Fig. 5 Docked conformation of compound 116 along with the
important amino acid residues of human placental aromatase: Apart
from the hydrogen bond with Met374 (using the –CN group of the
ligand), there is a steric bump formation with the polar amino acid
Asp309
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default settings) respectively. Both linear and linear spline
terms were used for development of the models.

pIC50 ¼ 6:856 �0:236ð Þ � 53:500 �6:793ð Þ < Jurs FNSA 3

þ0:063 > �0:008 �0:001ð ÞNCOSV�0:461 �0:081ð Þ
< Hbondacceptor � 2 > �0:472 �0:095ð Þ < 4:134

�A logP >

nTraining ¼ 87; LOF ¼ 0:309;R2 ¼ 0:713;

R2
a ¼ 0:699;F ¼ 50:91 df 4; 82ð Þ;Q2 ¼ 0:668;r2m LOOð Þ

¼ 0:496; nTest ¼ 29;R2
pred ¼ 0:639; r2m testð Þ

¼ 0:633; r2m overallð Þ ¼ 0:510

ð1Þ
The relative importance of the descriptors according to

their standardized regression coefficients is in the following
order: <Jurs_FNSA_3+0.063> >NCOSV> <Hbondacceptor-
2> ><4.134-AlogP>.

The standard errors of regression coefficients are given
within parentheses. Eq. 1 could explain 69.9% of the
variance (adjusted coefficient of variation) while it could
predict 66.8% of the variance (leave-one-out predicted
variance). The difference between R2 and Q2 values is not
very high (less than 0.3) [61]. When the equation was used
to predict the CYP19 inhibition potency of the test set
compounds, the predicted R2 (Rpred

2) value was found to be
0.639. The rm

2 values for the test, training and overall sets
were found to be 0.633, 496 and 0.510 respectively.

All the terms in the equation have a negative contribu-
tion toward the inhibitory activity. The negative coefficient
of the term <Jurs_FNSA_3+0.063> indicates that for
optimal inhibitory activity the value of Jurs_FNSA_3
should be more negative than -0.063. Jurs_ FNSA_3
(functional charged partial negative surface area) is derived
from the following equation

FNSA 3 ¼ PNSA 3

SASA
;

where PNSA_3 is atomic charge weighted negative surface
area. It is the sum of products of atomic solvent accessible
surface area and partial charges q�a over all negatively
charged atoms, i.e., PNSA 3 ¼ P

a� q�a :SA
�
a . SASA is the

solvent accessible surface area.
Compounds like 1, 25, 86, 89, 98, 103, 107, 110, 114

show poor inhibitory activities because of less negative
values of Jurs_FNSA_3. On the other hand compounds 24,
45, 48, 50, 51, 56, 60, 73, 77 having zero value of the term
<Jurs_FNSA_3+0.063418> show activity in the higher
range. Presence of heteroatoms (substituent groups like
nitro, cyano) increases the negative value of Jurs_FNSA_3.

This is supported by the docking study which shows that,
for example, the nitro group of compound 45 and cyano
group of compound 116 are involved in hydrogen bond
formation with the active site.

The negative coefficient of the term NCOSV (non common
steric overlap volume) shows its negative contribution.
NCOSV indicates the non common steric overlap volume of
each molecule to the shape reference compound 50. Com-
pounds with lower values of NCOSV (like 44, 45, 47, 48, 55,
64, 65, 79, 80, 82, 116) show higher inhibitory activity than
compounds having higher values of the parameter (35, 37, 89,
98, 100, 101, 103, 104, 107, 108, 114).

The term <Hbondacceptor-2> with negative regression
coefficient indicates that the number of hydrogen bond
acceptor groups should be 2 or less than 2 for optimum
inhibitory activity. Compounds with more number of
hydrogen bond acceptor groups (compounds like 39, 93,
105, 108, 114 containing three hydrogen bond acceptor
groups, compounds like 40, 71, 94, 111 containing four
hydrogen bond acceptor groups and compounds like 70
containing five hydrogen bond acceptor groups) show poor
inhibitory activity. The docking study has indicated that one
or two hydrogen bond(s) formed with amino acid Met374
is/are essential for all the highly active molecules and least
active molecules as well. However, increase in hydrogen
bond acceptor groups may not facilitate the inhibitory
activity as other parts of the molecules (not involved in
hydrogen bonding interactions) are stabilized by van der
Waals interactions (vide supra). Figure 9 shows the docked
geometry of compound 54 having 6 hydrogen bond
acceptor groups. This compound forms two hydrogen
bonds and also two steric bumps and the binding pose of
this compound is different from that of others.

Fig. 9 Docked conformation of compound 54 along with the
important amino acid residues of human placental aromatase: 54
forms two hydrogen bonds and also two steric bumps
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The negative regression coefficient of the term <4.134-
AlogP> indicates that the value of log of partition
coefficient (AlogP) should be more than 4.134 for optimum
inhibitory activity. This is supported by the docking study
which suggests that binding of the compounds with the
active pocket is stabilized by van der Waals interactions
with the non polar amino acids (Ala306, Thr310, Trp224,
Val370, Ile133, Phe134, Leu372, Val373).

pIC50 ¼ 5:561� 0:679 < Hbondacceptor � 2 > �0:084

< Jurs PNSA 3þ 34:086 > �0:553 < A logP

� 4:273 > �22:686 < Jurs FNSA 1� 0:414

> þ0:139Chiralcenters

nTraining ¼ 87; LSE ¼ 0:266;R2 ¼ 0:691;R2
a ¼ 0:676;

F ¼ 45:83 df 4; 82ð Þ;Q2 ¼ 0:630; r2m LOOð Þ ¼ 0:605;

nTest ¼ 29;R2
pred ¼ 0:630; r2m testð Þ ¼ 0:608;

r2m overallð Þ ¼ 0:606

ð2Þ

The above equation was found to be statistically
significant with explained variance of 67.6% and leave-
one-out predicted variance of 63.0%. When the equation is
applied on the test set compounds the Rpred

2 value was
found to be 0.630. Statistical significance of the model was
also indicated by rm

2 parameters listed in Table 4. Accord-
ing to the standardized values of the regression coefficients,
the relative importance of the variables in the G/PLS
equation is in the following order: <Hbondacceptor-2>
><Jurs_PNSA_3 +34.086> > <AlogP-4.273> >
<Jurs_FNSA_1-0.414>> Chiralcenters.

The negative coefficient of <Jurs_PNSA_3 +34.086>
indicates that compounds with the values of Jurs_PNSA_3
more negative than -34.086 possess significant inhibitory
activity (for example 24, 45, 48, 51, 55, 56, 60) than
compounds with corresponding lower negative values of
the parameter (1, 25, 107). Presence of heteroatoms (groups
like nitro, cyano) increases the negative value of
Jurs_PNSA_3. This is supported by the docking study

which shows that, for example, the nitro group of
compound 45 and cyano group of compound 116 are
involved in hydrogen bond formation with the active site.

Jurs_FNSA_1 is the fractional charged partial negative
surface area. The Jurs_FNSA_1 values are obtained by
dividing the product of partial negative solvent-accessible
surface area and the total negative charge by the total
molecular solvent-accessible surface area from the follow-
ing equation

FNSA 1 ¼ PNSA1

SASA
;

where PNSA1 is the sum of the solvent accessible surface
areas of all negatively charged atoms (PNSA1 ¼

P
a� SA�

a ).
The negative coefficient of the term <Jurs_FNSA_1-0.414>
indicates that the value of Jurs_FNSA_1 should be less than
0.414 for better inhibitory activity (like compounds 24, 45,
47, 52, 77). The parameter FNSA_1 balances the term
PNSA_3 in Eq. 2 as hydrophobicity and nonpolar surface
area are also required for binding (vide supra).

The negative regression coefficient of the term <AlogP-
4.273> indicates that the value of log of partition
coefficient (AlogP) should be less than 4.273 for optimum
inhibitory activity. As we have seen from the docking
studies that the compounds are involved in both hydrogen
bonding and van der Waals interactions, there will be a cut
off higher limit of favorable hydrophobicity. Too much
increase of molecular bulk (and hence hydrophobicity) may
lead to unfavorable steric interactions.

The inhibitory activity is favored by increase in number of
chiral centers as indicated by its positive regression coefficient.
Compounds witha higher number of chiral centers (like 20, 21,
24, 81, 116) show activity in the moderate range. Compounds
without any chiral centers like 1, 86, 89, 94, 107, 108, 110,
114 show poor inhibitory activities. It has been observed that
compounds without any chiral centers (45, 47, 48, 51, 56, 64)
show activity in higher range due to favorable values of the
other three parameters (<Hbondacceptor-2>, <Jurs_PNSA_3
+34.086>, <Jurs_FNSA_1-0.414>).

Table 4 Statistical comparison of different modelsa

Type of descriptors Type of statistical
analysis

Equation
no.

R2 Q2 Rpred
2 rm

2
(test) rm

2
(LOO) rm

2
(overall)

MSA, Spatial, Electronic,
Thermodynamic, Structural

GFA (1) 0.713 0.668 0.639 0.633 0.496 0.510

G/PLS (2) 0.691 0.630 0.630 0.608 0.605 0.606

Topological, Structural,
Thermodynamic

GFA (3) 0.662 0.602 0.637 0.628 0.444 0.469

2D GFA (4) 0.680 0.621 0.687 0.657 0.454 0.489

a The best values of different metrics (see text for details) are shown in bold face.
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Modeling with 2D descriptors

Eq. 3 is one of the best ones obtained from the genetic
function approximation (5000 iterations). Both linear and
linear spline terms were used for development of the models.

pIC50 ¼ 5:065 �0:415ð Þ þ 0:065 �0:011ð ÞS tN

� 0:567 �0:107ð Þ < A logP � 4:701 >

þ0:644 �0:139ð ÞChiralcenters� 0:030 �0:009ð ÞSC 3P

� 0:367 �0:126ð Þ < S dsCH � 1:553 >

nTraining ¼ 87; LOF ¼ 0:374;R2 ¼ 0:662;R2
a ¼ 0:641;

F ¼ 31:68 df 5; 81ð Þ;Q2 ¼ 0:602; r2m LOOð Þ ¼ 0:444;

nTest ¼ 29;R2
pred ¼ 0:637; r2m testð Þ ¼ 0:628; r2m overallð Þ ¼ 0:469

ð3Þ

The standard errors of regression coefficients are given
within parentheses. The statistical quality of Eq. 3 is listed
in Table 4. According to the standardized values of the
regression coefficients, the relative importance of the
variables is in the following order: S_tN> <AlogP-4.701>
>Chiralcenters > SC_3P > <S_dsCH-1.553>.

The E-state index of fragment ≡N (S_tN) has positive
contribution toward the inhibitory activity. Compounds (for
example 47, 48, 50, 51, 56, 59) with high values of the
parameter possess significant inhibitory activity. Com-
pounds having a cyano substituent have non-zero values
of this parameter and it was found from the docking study
that the cyano group of the compounds may be involved in
the favorable hydrogen boning interactions with amino acid
residues like Met374.

The negative regression coefficient of the term <AlogP-
4.701> indicates that the value of log of partition coefficient
(AlogP) should be less than 4.701 for optimum inhibitory
activity. Considering Eqs. 1 and 3, we find that the range of
AlogP should be from 4.134 to 4.701. Based on this range
of AlogP values, compounds like 51, 52, 54, 55, 60 show
good inhibitory activity. Other compounds in this range
show poor activity due to absence of the ≡N fragment. In
the docking study, it was found that binding of different
compounds with the active pocket is stabilized by van der
Waals interactions with the non polar amino acids (Ala306,
Thr310, Trp224, Val370, Ile133, Phe134, Leu372, Val373).

In Eq. 3, number of chiral centers shows a positive
contribution as also found in Eq. 2.

The parameter SC_3P is the number of third-order sub
graphs in the molecular graph: the number of paths of
length 3. It depends on the branching of molecules. The
negative coefficient of the term indicates compounds with
high values of the parameter (like 31, 35, 37, 58) show
activity in the lower range than compounds with low values
of the parameter (45, 64, 116).

The parameter S_dsCH is the E-state index of fragment =
CH -. The negative coefficient of the term <S_dsCH-1.553>
indicates that for optimal inhibitory activity the value of the
parameter should be less than 1.553. Almost all the
compounds possess a zero value for the term S_dsCH except
a few compounds. Compounds (like 70, 71, 108, 114) with
values of the parameter more than 1.553 show poor
inhibitory activity. Compounds with a zero value for the
parameter like 45, 47, 50, 51, 56, 64, 67, 116 show
significant inhibitory activities. In this regard, compounds
94 and 107 show poor activity instead of zero value for the
parameter due to lack of tertiary nitrogen atom (S_tN) and
high SC_3P and AlogP values.

Modeling with combined set of descriptors

Eq. 4 is one of the best equations obtained from the genetic
function approximation (5000 iterations) using combined
set of descriptors. Both linear and linear spline terms were
used for development of the models.

pIC50 ¼ 3:697 �0:347ð Þ � 0:008 �0:001ð Þ < Jurs TASA

� 494:777 > þ0:053 �0:011ð ÞStN
�12:944 �3:624ð Þ < S aaaC � 2:520 >

�0:208 �0:063ð ÞHbondacceptor
þ 1:865 �0:576ð ÞFo

nTraining ¼ 87; LOF ¼ 0:354;

R2 ¼ 0:680;R2
a ¼ 0:660;F ¼ 34:39 df 5; 81ð Þ;

Q2 ¼ 0:621; r2m LOOð Þ ¼ 0:454; nTest ¼ 29;R2
pred ¼ 0:687;

r2m testð Þ ¼ 0:657; r2m overallð Þ ¼ 0:489

ð4Þ

According to the standardized regression coefficients,
the relative importance of the descriptors is in the following
order: <Jurs_TASA-494.777> >S_tN> < S_aaaC -2.520>
>Hbondacceptor> Fo.

The negative coefficient of <Jurs_TASA-494.777> indi-
cates that value of total hydrophobic surface area (TASA)
should be less than 494.777. Jurs_TASA (total hydrophobic
surface area) is defined as the sum of solvent accessible
surface areas of atoms with absolute value of partial charges
less than 0.2, i.e.,

TASA ¼
X

a
SAa

8a ¼ qaj j 0:2h
Compounds having lower values of this parameter have

higher inhibitory activity. The presence of a number of
polar groups or fragments upto the required limit in case of
compounds like 45, 48, 58, 63, 64, 65, 73, 114 with TASA
values less than 494.777 show significant favorable
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inhibitory activities whereas compounds (for example 103,
107, 108, 110, 114) with corresponding higher values of the
parameter show poor inhibitory activity. As we have
already indicated in the docking studies that hydrogen
bonding interactions are important apart from van der
Waals interactions for this series of compounds, and hence,
absence of required number of polar groups (leading to
higher values of hydrophobic surface area) leads to poor
inhibitory activity.

The E-state index of fragment ≡N (S_tN) has a positive
contribution toward the inhibitory activity and this obser-
vation is similar to Eq. 3.

The term < S_aaaC -2.520> with negative regression
coefficient indicates that the value of the E-state index of
fragment (S_aaaC) should be less than 2.520.
Compounds (1, 25, 36,107, 108) with higher values of the
corresponding parameter show poor inhibitory activity.
Compounds with zero and low values of the parameter
like compounds 45, 48, 58, 64, 116 show good inhibitory
activity and corresponding <Jurs_TASA-494.777> and S_tN
parameters values for the mentioned compounds are within
the favorable range as mentioned earlier.

The term Hbondacceptor shows a negative regression
coefficient when the parameter S_tN shows a positive
regression coefficient and this justifies the negative coeffi-
cient of the term <Hbondacceptor-2> Eqs. 1 and 2.

Common overlap volume ratio (Fo) is the ratio of
common overlap steric volume to the volume of individual
molecules. The positive coefficient of Fo indicates that
molecules with similar common overlap steric volume to
shape reference compounds will show good inhibitory
activity as exemplified by the compounds like 47, 54, 48,
80. Molecules (72, 108, 110) which are very dissimilar to
the shape reference compounds show poor activity.

Randomization tests of the developed models

Further validation of the models was carried out using
the Y scrambling technique. The process randomization
test has been performed at 90% confidence level and the
developed models were subjected to randomization test
at 99% confidence interval. The Y column was
permuted randomly and the average correlation coeffi-
cient (Rr) of all the randomized models was calculated.
The process randomization is different from model
randomization in that the descriptor selection process is
repeated from the whole pool of descriptors in the former
case while in the latter case only those descriptors present
in the model are used. The values of Rr obtained for all the
models were significantly lower than the squared correla-
tion coefficient (R) of the non randomized model (Table 5).
The metric Rp

2, which penalizes the model R2 for small
differences between R2 and Rr

2, was calculated for all the T
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developed models. The results show that for all the
equations the values of Rp

2 are above 0.5 or at least near
0.5 (for both process and model randomization tests) and
this suggests that Eqs. 1–4 are robust and not obtained by
chance.

Overview and conclusions

In order to explore the molecular shape features, properties
and appropriate binding mode of aromatase inhibitors in the
active site, molecular shape analysis (along with thermo-
dynamic, structural and Jurs parameters and also with
topological descriptors) and molecular docking studies
were performed on a dataset of 116 structurally diverse
compounds. For the QSAR studies, initially the dataset was
divided into training (n=87) and test set (n=29) by k-means
clustering techniques based on standardized topological,
structural and thermodynamic descriptor matrix. The dock-
ing study indicates that the important interacting amino
acids present in the active site are Met374, Arg115, Ile133,
Ala306, Thr310, Asp309, Val370 and Ser478. One or more
hydrogen bonds formed with Met 374 are one of the
essential requirements of the ligands for optimum binding.
Besides this, compounds in higher activity range form
hydrogen bonds with Arg115 and/or Thr310. The amino
acids responsible for hydrophobic interactions are Ala306,
Thr310, Trp224, Val370, Ile133, Phe134, Leu372, Val373.
There may be unfavorable steric clashes with Asp309,
Thr310, Met374, Arg115, Ser478, Val370, Phe221 for
compounds having undesirable substitution pattern. The
developed QSAR models indicate that optimum number of
Hbondacceptor groups (less than or equal to 2) is favorable
for the binding and this is supported by our docking results.
The developed QSAR model indicates the importance of a
different shape (NCOSV, Fo) Jurs (Jurs_FNSA_3,
Jurs_PNSA_3, Jurs_FNSA_1, Jurs_TASA) structural
(Hbond acceptors, Chiralcenters, AlogP), topological
branching index (SC_3P) and E-state index for different
fragments (S_tN, S_dsCH, S_aaaC). Equations. (1), (2) and
(3) indicate the optimal range of hydrophobicity of
molecules. It was observed in the docking study that in
compounds like 54, 56, 57, 116, the –CN group (S_tN
fragment) forms hydrogen bond with Met 374 and this is
supported by the positive contribution of S_tN fragment in
the QSAR models and this is also corroborated by the
published literature [26]. All four reported QSAR models
have been subjected to validation using multiple strategies
like internal validation, external validation and Y-
randomization. The statistical quality in terms of external
validation of the model with 2D descriptors is almost
comparable with that of the MSA models. However,
internal validation results of the model with 2D descriptors

are inferior to the MSA models. However, the advantage of
2D descriptors is that these do not require conformational
analysis and alignment unlike MSA. For aromatase inhibi-
tion, the GFA model (MSA) with spline option (Eq. 1) was
found to be the best model based on internal validation
(Q2=0.668) and the best predictive model (external
validation) was the GFA model with spline option using
combined set of descriptors (Eq. 4; Rpred

2=0.687). Based
on rm

2
(overall) criterion, the best model among the four

models (Table 4) was the G/PLS model (MSA) with spline
option (Eq. 2; rm

2
(overall)=0.606). So, it can be concluded

that for ideal aromatase inhibitors, there should be at least
one or two hydrogen bond acceptor groups (like –NO2, -
CN) and optimal hydrophobicity.
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